Violympic toán 7

FT

Biết a/a'+b'/b=1

b/b'+c'/c=1

CMR a.b.c+a'.b'.c'=0

TH
16 tháng 11 2017 lúc 20:23

\(\dfrac{a}{a'}+\dfrac{b'}{b}=1\Rightarrow\dfrac{a}{a'}\cdot\dfrac{b}{b'}+\dfrac{b'}{b}\cdot\dfrac{b}{b'}=\dfrac{b}{b'}\Rightarrow\dfrac{ab}{a'b'}+1=\dfrac{b}{b'}\left(1\right)\)

\(\dfrac{b}{b'}+\dfrac{c'}{c}=1\Rightarrow\dfrac{b}{b'}=1-\dfrac{c'}{c}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{ab}{a'b'}=-\dfrac{c'}{c}\Rightarrow abc=-a'b'c'\Rightarrow abc+a'b'c'=0\)

Vậy \(abc+a'b'c'=0\left(dpcm\right)\)

Bình luận (0)
FT
16 tháng 11 2017 lúc 20:14

Help me vs mấy chế ơi

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
SV
Xem chi tiết