Đại số lớp 7

OD

b,CMR:với mọi số nguyên dương n thì:\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

TA
13 tháng 12 2016 lúc 21:59

ta có : 3\(^{n+2}\)-\(2^{2+n}\)+3\(^n\)-2\(^n\)=\(3^n.3^2-2^2.2^n+3^n-2^n\)

=\(3^n\)(\(3^2+1\))-2\(^n\)(2\(^2\)+1)

=\(3^n\).10-\(2^n\).5

=5 (3\(^n\).2-2\(^n\))=5.(2.\(3^n\)-\(2^{n-1}\))

=5.A

ta thấy A là số chẵn mà 5 nhân vs bất kì số chẵn nào cũng có tân cùng = 0 nên \(3^{n+2}-2^{n+2}\)+\(3^n-2^n\)\(⋮10\)(đpcm )

Bình luận (0)
PD
14 tháng 12 2016 lúc 11:44

Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\cdot9-2^n\cdot4+3^n-2^n=\left(3^n\cdot9+3^n\right)-\left(2^n\cdot4+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

Vì n>0\(\Rightarrow2^n⋮2\Rightarrow2^n\cdot5⋮2,2^n\cdot5⋮5\)

Mà ƯCLN(2;5)=1

\(\Rightarrow2^n\cdot5⋮2\cdot5=10\)

Lại có:\(3^n\cdot10⋮10\)

\(\Rightarrow3^n\cdot10-2^n\cdot5⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)

 

 

 

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
NA
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
TD
Xem chi tiết
NM
Xem chi tiết
NQ
Xem chi tiết
LL
Xem chi tiết