Với n \(\in\) Z , ta có : A= \(\dfrac{20n+13}{4n+3}\)
Gọi Ước chung lớn nhất của 20n+13 và 4n+3 là d ( d \(\in\) Z*)
\(\Rightarrow\left\{{}\begin{matrix}20n+13⋮d\\4n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+13⋮d\\5\left(4n+3\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+13⋮d\\20n+15⋮d\end{matrix}\right.\)
\(\Rightarrow\) (20n + 15) - (20n + 13)\(⋮\) d
\(\Rightarrow\) 20n + 15 - 20n - 13\(⋮\) d
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 20n+13 và 4n+3 ko có số nào chia hết cho 2
=> d = \(\pm1\)