Violympic toán 7

H24

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

DH
2 tháng 9 2019 lúc 9:46

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4

an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Bình luận (0)
H24
2 tháng 9 2019 lúc 9:51

Ta có: 3n (n+1) = n(n+1) (n+2) − (n−1) n(n+1)

Ap dụng vào bài toán ta được

A=1.2+2.3+...+n(n+1)

⇒3A=1.2.3+2.3.3+...+n(n+1).3

=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)

= n (n+1) (n+2)

=>A = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
NH
2 tháng 9 2019 lúc 9:54

Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Bình luận (0)
VT
2 tháng 9 2019 lúc 9:58

Bài 1:

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.4+3.4.3+...+3n.\left(n+1\right)\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right)n.\left(n+1\right)\)

\(=n.\left(n+1\right).\left(n+2\right)\)

\(\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Vậy \(A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}.\)

Chúc bạn học tốt!

Bình luận (0)
TV
2 tháng 9 2019 lúc 10:38

Hỏi đáp Toán

Bình luận (0)
H24
2 tháng 9 2019 lúc 12:25

Cảm ơn mn nhaaaa !!!

Bình luận (1)

Các câu hỏi tương tự
NN
Xem chi tiết
TD
Xem chi tiết
PB
Xem chi tiết
DC
Xem chi tiết
DN
Xem chi tiết
PA
Xem chi tiết
DC
Xem chi tiết
NN
Xem chi tiết
VN
Xem chi tiết