Chương III : Phân số

NN

Bài 1 :Tìm các số nguyên dương n sao cho \(\frac{n^2}{60-n}\) là một số nguyên.

Bài 2: Tím các cặp số nguyên (x,y) sao cho \(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)

Bài 3: Cho A=\(\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)

B=\(\frac{1}{1.81}+\frac{1}{2.82}\frac{1}{3.83}+...+\frac{1}{20.100}\) Tính:\(\frac{A}{B}\)

Bài 4:Tính giá trị biểu thức:

A=\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right).....\left(\frac{1}{99}+1\right)\)

Y
18 tháng 5 2019 lúc 18:13

3. + \(20A=\frac{21-1}{1\cdot21}+\frac{22-2}{2\cdot22}+...+\frac{100-80}{80\cdot100}\)

\(\Rightarrow20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+...+\frac{1}{80}-\frac{1}{100}\)

\(\Rightarrow20A=\left(1+\frac{1}{2}+...+\frac{1}{80}\right)-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{20}\left[\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\right]\)

+ \(80B=\frac{81-1}{1\cdot81}+\frac{82-2}{2\cdot82}+...+\frac{100-2}{20\cdot100}\)

\(=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)

\(\Rightarrow B=\frac{1}{80}\left[\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\right]\)

Do đó : \(\frac{A}{B}=\frac{\frac{1}{20}}{\frac{1}{80}}=4\)

4. + \(A=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot99}=\frac{100}{2}=50\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DA
Xem chi tiết
DV
Xem chi tiết
DA
Xem chi tiết
DA
Xem chi tiết
DA
Xem chi tiết
DA
Xem chi tiết
PT
Xem chi tiết
DP
Xem chi tiết