Ta có: \(a=6m+1=7n+3\) \(\left(m,n\in N\right)\)
\(\Rightarrow a+11=6m+1+11=7n+3+11\)
\(\Rightarrow a+11=6m+12=7n+14\)
\(\Rightarrow a+11=6.\left(m+2\right)=7.\left(n+2\right)\)
\(\Rightarrow a+11\in BC\left(6;7\right)\)
Vì \(\left(6;7\right)=1\Rightarrow BCNN\left(6;7\right)=6.7=42\)
\(\Rightarrow a+11\in B\left(42\right)\)
\(\Rightarrow a+11=42k\left(k\in N\right)\)
\(\Rightarrow a=42k-11\)
\(\Rightarrow a=42k-42+31\)
\(\Rightarrow a=42\left(k-1\right)+31\)
Vậy a chia cho 42 dư 31.