Violympic toán 6

NM

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}=\frac{1}{k}\times\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
Tìm giá trị của k.

QD
19 tháng 2 2017 lúc 9:52

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

Bình luận (1)
NL
19 tháng 2 2017 lúc 8:27

k=2

chuan 100%ok

Bình luận (2)
TH
19 tháng 2 2017 lúc 9:36

k=2 do

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
NL
Xem chi tiết
PD
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
CT
Xem chi tiết
NM
Xem chi tiết
PD
Xem chi tiết