\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{4056194}{4056195}+\left(-1006\right)\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{4056195}\right)+\left(-1006\right)\\ =\left[1+1+1+...+1+\left(-1006\right)\right]-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{4056195}\right)\\ =1-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{4056195}\right)\\ =1-\dfrac{1}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{4056195}\right)\\ =1-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2013\cdot2015}\right)\\ =1-\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\\ =1-\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2015}\right)\\ =1-\dfrac{1}{2}\cdot\dfrac{2014}{2015}\\ =1-\dfrac{1007}{2015}\\ =\dfrac{1008}{2015}\)