Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)