Violympic toán 7

H24

a) x:y:z= 2:3:5 & xyz=810

b)\(\dfrac{x^3}{8}\) =\(\dfrac{y^3}{27}\)=\(\dfrac{z^3}{64}\)& x2+2y2-3z2= -650

TY
30 tháng 10 2018 lúc 13:11

a) Ta có: x : y : z = 2 : 3 : 5

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Giả sử: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

⇒ x = 2k ; y = 3k ; z = 5k

Ta có: xyz = 810

⇒ 2k . 3k . 5k = 810

30 . k3 = 810

k3 = 810 : 30

k3 = 27

⇒ k = 3

⇒ k = 3 ⇒ x = 2 . 3 = 6

y = 3 . 3 = 9

z = 5 . 3 = 15

Vậy x = 6 ; y = 9 ; z = 15

b) Ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}=\dfrac{x^2+2y^2-3z^2}{4+18-48}\)

\(=\dfrac{-650}{-26}=25\)

+) \(\dfrac{x}{2}=25\) ⇒ x = 50

\(\dfrac{y}{3}=25\) ⇒ y = 75

\(\dfrac{z}{4}=25\) ⇒ z = 100

Vậy x = 50 ; y = 75 ; z = 100

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
BU
Xem chi tiết