Violympic toán 7

KN

a) Tìm tất cả các cặp số (x;y) thoả mãn :

\(\left(5x-y\right)^{2018}+|x^2-4|^{2019}\le0\)

b) Tìm x, y \(\in Z^+\) thoả mãn: x.y + x - y = 0

H24
30 tháng 6 2019 lúc 20:50

Chỉ biết làm câu b) thôi, thông cảm nha :D

\(xy+x-y=0\\ x\left(y+1\right)-y-1=0-1\\x\left(y+1\right)-\left(y+1\right)=-1\\ \left(y+1\right)\left(x-1\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1 \)

Ta xét các TH:

\(\circledast\left\{{}\begin{matrix}y+1=1\\x-1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1-1\\x=-1+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=0\end{matrix}\right.\) (ktm)

\(\circledast\left\{{}\begin{matrix}y+1=-1\\x-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-1-1\\x=1+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\) (tm)

Vậy \(\left(x;y\right)=\left(2;-2\right)\)

Bình luận (0)
KS
30 tháng 6 2019 lúc 21:30

a) Ta có: (5x - y)2018 \(\ge\) 0

|x2 - 4|2019 \(\ge\)0

=> (5x - y)2018 + |x2 - 4|2019 \(\ge\) 0

Mà: (5x - y)2018 + |x2 - 4|2019 \(\le\)0

=> (5x - y)2018 + |x2 - 4|2019 = 0

=> \(\left\{{}\begin{matrix}\left(5x-y\right)^2=0\\\left|x^2-4\right|^{2019}=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-y=0\\\left|\left(x-2\right)\left(x+2\right)\right|=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=5x\\\left(x+2\right)\left(x-2\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=5x\\\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-10\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
DX
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DX
Xem chi tiết
NT
Xem chi tiết
DV
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết