Ôn tập cuối năm phần số học

HL

a) Tìm phân số tối giản biết rằng nếu cộng mẫu số vào tử số và giữ nguyên mẫu số thì giá trị phân số tăng lên 7 lần.

b) Chứng minh: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{97}{144}\)với mọi n ∈ N; n ≥ 2.

LV
26 tháng 5 2018 lúc 21:01

a, Gọi phân số cần tìm là \(\dfrac{a}{b}\); phân số sau khi cộng là \(\dfrac{a+b}{b}\).

Theo bài ra ta có ;

\(\dfrac{a}{b}\cdot7=\dfrac{a+b}{b}\\ \Leftrightarrow\dfrac{7a}{b}=\dfrac{a}{b}+1\\ \Leftrightarrow\dfrac{7a}{b}-\dfrac{a}{b}=1\\ \Leftrightarrow\dfrac{6a}{b}=1\\ \Leftrightarrow6a=b\)

\(\dfrac{a}{b}\) là phân số tối giản nên \(\dfrac{a}{b}=\dfrac{1}{6}\)

Vậy phân số tối giản cần tìm là \(\dfrac{1}{6}\)

b, Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

Ta có :

\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =\dfrac{1}{2}-\dfrac{1}{n}\)

\(n\ge2vàn\in N\Rightarrow\dfrac{1}{2}\ge\dfrac{1}{n}\Rightarrow\dfrac{1}{2}-\dfrac{1}{n}< \dfrac{1}{2}\)

\(\dfrac{1}{2}< \dfrac{97}{144}\Rightarrow\dfrac{1}{2}-\dfrac{1}{n}< \dfrac{97}{144}\Leftrightarrow A< \dfrac{97}{144}\\ \RightarrowĐpcm\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
VL
Xem chi tiết
QN
Xem chi tiết