Đại số lớp 7

TH

a) So sánh các số a,b,c biết

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\left(a,b,c\ne0\right)\)

b) Chứng minh rằng nếu\(a^2=bc\left(với a\ne b,a,c\ne0v\text{à a \ne}+-c\right)th\text{ì}\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

NT
14 tháng 8 2017 lúc 20:02

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

b, Ta có: \(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrowđpcm\)

Bình luận (0)
TT
14 tháng 8 2017 lúc 20:03

a) $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1$

(tính chất dãy tỉ số bằng nhau)

$\dfrac{a}{b}=1=>a=b$

$\dfrac{b}{c}=1=>b=c$

$\dfrac{c}{a}=1=>c=a$

Vậy a = b = c.

b) Ta có : $a^2=bc=>\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$(tính chất dãy tỉ số bằng nhau)

$=>\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$

$=>\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}$

Bình luận (3)
MS
14 tháng 8 2017 lúc 22:08

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

\(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Đặt:

\(\dfrac{a}{c}=\dfrac{b}{a}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=ck\\b=ak\end{matrix}\right.\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{ck+ak}{ck-ak}=\dfrac{k\left(c+a\right)}{k\left(c-a\right)}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Bình luận (0)

Các câu hỏi tương tự
PM
Xem chi tiết
NC
Xem chi tiết
YV
Xem chi tiết
VT
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết
NY
Xem chi tiết