Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 7

TR

a) Chứng minh 2010100+201099 chia hết cho 2011

b) Rút gọn biểu thức - \(\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)

- \(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)

c) So sánh các lũy thừa

- 321 và 231

- 2300 và 3200

- 329 và 1813

d) Tìm số tự nhiên n biết: - \(\dfrac{1}{9}\cdot3^4\cdot3^{n+1}=9^4\)

- \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)

e) Chứng minh A và B là hai số tự nhiên liên tiếp

A=20+21+22+23+...+22011

MD
13 tháng 12 2017 lúc 9:42

a) \(2010^{100}+\)\(2010^{99}=2010^{99}.2010+2010^{99}.1=2010^{99}.\left(2010+1\right)=2010^{99}.2011\)Vậy biểu thức chia hết cho 2011.

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
HD
Xem chi tiết
BT
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
LS
Xem chi tiết
TV
Xem chi tiết