4/2x+3/ = 36
/2x+3/ = 36 : 4
/2x+3/ = 9
\(\Rightarrow\left[{}\begin{matrix}2x+3=9\\2x+3=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=9-3\\2x=\left(-9\right)-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-12\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-6\end{matrix}\right.\)
Vậy x \(\in\) { 3;-6 }
4/2x+3/ = 36
/2x+3/ = 36 : 4
/2x+3/ = 9
⇒[2x+3=92x+3=−9⇒[2x+3=92x+3=−9
⇒[2x=9−32x=(−9)−3⇒[2x=9−32x=(−9)−3
⇒[2x=62x=−12⇒[2x=62x=−12
⇒[x=6:2x=(−12):2⇒[x=6:2x=(−12):2
⇒[x=3x=−6⇒[x=3x=−6
Vậy x ∈∈ { 3;-6 }