\(3^{x-1}+5.3^{x-1}=162\)
\(3^{x-1}.1+5.3^{x-1}=162\)
\(3^{x-1}.\left(1+5\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(x=3+1\)
\(x=4\)
Vậy \(x=4\)
Ý bạn là \(\left(3^x-1+5\right)\left(3^x-1\right)\)
Hay \(\left(3^{x-1}+5\right)\left(3^{x-1}\right)\)
\(3^{x-1+5}\) hay là \(3^{x-1}+5\) hay là \(3^x-1+5\) thế bạn