Violympic toán 6

CD

1,Tính

a, A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + . . . + \(\dfrac{1}{2017.2018}\)

b,B = \(\dfrac{5}{2.4}\) + \(\dfrac{5}{4.6}\) + \(\dfrac{5}{6.8}\) + . . . + \(\dfrac{5}{2016.2018}\)

c. C = \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\) + \(\dfrac{1}{108}\) + . . . + \(\dfrac{1}{990}\)

LL
1 tháng 5 2018 lúc 15:31

a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018

A = 1 - 1/2018 = 2017/2018

b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)

B= 5/2 . ( 1/2 - 1/ 2018 )

B = 504/1009

c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33

C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33

C = 1/3 - 1/33

C= 10/33

Bình luận (0)
LL
1 tháng 5 2018 lúc 15:33

phan B mk quên nhân với 5/2

lấy 5/2 . 504/1009 = 1260/1009

Bình luận (0)
H24
1 tháng 5 2018 lúc 15:36

a) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2017.2018}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(=1-\dfrac{1}{2018}=\dfrac{2017}{2018}.\)

b) \(B=\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+...+\dfrac{5}{2016.2018}\)

\(=2,5\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2016.2018}\right)\)

\(=2,5\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2016}-\dfrac{1}{2018}\right)\)

\(=2,5\left(\dfrac{1}{2}-\dfrac{1}{2018}\right)=\dfrac{1260}{1009}.\)

c) \(C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)

=>\(3C=\dfrac{3}{3.6}+\dfrac{3}{6.9}+\dfrac{3}{9.12}+...+\dfrac{1}{30.33}\)

\(=\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\)

\(=\dfrac{1}{3}-\dfrac{1}{33}=\dfrac{10}{33}\)

=> \(C=\dfrac{10}{33}:3=\dfrac{10}{99}.\)

Bình luận (0)
DP
1 tháng 5 2018 lúc 15:38

a. A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{2017.2018}\)

A= 1-\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) +. . .+\(\dfrac{1}{2017}\) -\(\dfrac{1}{2018}\)

A=1-\(\dfrac{1}{2018}\)

A=\(\dfrac{2018}{2018}\)-\(\dfrac{1}{2018}\)

A=\(\dfrac{2017}{2018}\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
Xem chi tiết
DX
Xem chi tiết
PR
Xem chi tiết
SZ
Xem chi tiết
SM
Xem chi tiết
ND
Xem chi tiết
CD
Xem chi tiết
LH
Xem chi tiết