Violympic toán 7

NC

1/Cho biết x,y là 2 đại lượng tỉ lệ thuận, x\(_1\) và x\(_2\) là 2 giá trị khác nhau của x; y\(_1\) và y\(_2\) là 2 giá trị tương ứng của y,biết

x\(_2\)+y\(_2\)=20; x\(_1\)=2 và y\(_1\)=3.Tính x\(_2\) và y\(_2\) ?

2/Cho ba số a,b,c khác 0 thỏa mãn:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)

Tính giá trị của biểu thức :

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

*Các bn nào giỏi giúp mk cả 2 bài lun nhé,mk hứa bn nào làm đúng cả 2 bài thì mk sẽ tặng 3 tick nhé

LƯU Ý:Từ bây giờ tới sáng thứ 6 thui nhé

MS
6 tháng 12 2017 lúc 18:29

\(x\)\(y\) là 2 đại lượng tỉ lệ thuận nên \(x=yk\Rightarrow x_1=y_1k\Leftrightarrow2=3k\Leftrightarrow k=\dfrac{2}{3}\)

\(\Rightarrow x_2=\dfrac{2}{3}y_2\Leftrightarrow\dfrac{x_2}{2}=\dfrac{y_2}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x_2}{2}=\dfrac{y_2}{3}=\dfrac{x_2+y_2}{2+3}=\dfrac{20}{5}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2.4=8\\y_2=3.4=12\end{matrix}\right.\)

Bình luận (1)
MS
6 tháng 12 2017 lúc 18:33

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{8abc}{abc}=8\)

Vậy....

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
BU
Xem chi tiết
KO
Xem chi tiết
VN
Xem chi tiết
LS
Xem chi tiết
DX
Xem chi tiết
JH
Xem chi tiết
NH
Xem chi tiết