Violympic toán 7

DO

1.a) Tìm cặp số nguyên (x; y) thỏa mãn: |y+2015|+32=\(\frac{2016}{\left(2x-6\right)^2+63}\).

b) Cho các số thực dương a, b, c thỏa mãn \(b^2\)=ac. Chứng minh rằng: \(\frac{a}{c}\)=\(\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)

DH
4 tháng 1 2020 lúc 9:39

\(1a,\) Ta có: \(\left(2x-6\right)^2\ge0\forall x\Rightarrow\left(2x-6\right)^2+36\ge36\forall x\)

\(\Rightarrow\frac{2016}{\left(2x-6\right)^2+63}\le\frac{2016}{63}=32\)

\(\Rightarrow\left|y+2015\right|+32\le32\)

\(\Rightarrow\left|y+2015\right|\le0\)

\(\Rightarrow\left|y+2015\right|=0\)

\(\Rightarrow y=-2015\)

\(\Rightarrow2x-6=0\Rightarrow x=3\)

Vậy \(x=3;y=-2015\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
4 tháng 1 2020 lúc 9:41

b)

Ta có: \(b^2=ac.\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}.\)

\(\Rightarrow\frac{a}{b}=\frac{a+2017b}{b+2017c}\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)

\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)

\(\Rightarrow\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
DV
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết