\(S=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{98\cdot99\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\\ =\dfrac{1}{2}\cdot\dfrac{4949}{9900}\\ =\dfrac{4949}{19800}\)