Ôn tập toán 6

PQ

1: Tìm GTNN

A = |x - 2| + |x + y - 5| + 3

2: Tìm GTLN

\(\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}\)

LF
22 tháng 5 2017 lúc 22:38

Bài 1:

\(A=\left|x-2\right|+\left|x+y-5\right|+3\)

Ta thấy: \(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x+y-5\right|\ge0\end{matrix}\right.\)\(\forall x,y\)

\(\Rightarrow\left|x-2\right|+\left|x+y-5\right|\ge0\forall x,y\)

\(\Rightarrow\left|x-2\right|+\left|x+y-5\right|+3\ge3\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x+y-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+y-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Bài 2:

\(B=\dfrac{10}{\left|x+3\right|+\left|y+7\right|+2}\)

Ta thấy: \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|y+7\right|\ge0\end{matrix}\right.\)\(\forall x,y\)

\(\Rightarrow\left|x+3\right|+\left|y+7\right|\ge0\forall x,y\)

\(\Rightarrow\left|x+3\right|+\left|y+7\right|+2\ge2\forall x,y\)

\(\Rightarrow\dfrac{1}{\left|x+3\right|+\left|y+7\right|+2}\le\dfrac{1}{2}\forall x,y\)

\(\Rightarrow B=\dfrac{10}{\left|x+3\right|+\left|y+7\right|+2}\le\dfrac{10}{2}=5\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left|x+3\right|=0\\\left|y+7\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\y+7=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)

Bình luận (0)
AT
22 tháng 5 2017 lúc 22:44

1/ Vì: \(\left|x-2\right|\ge0\forall x\Rightarrow Min_{\left|x-2\right|}=0\Leftrightarrow x=2\)(1)

Lại có: \(\left|x+y-5\right|\ge0\forall x,y\)

hay \(\left|2+y-5\right|\ge0\forall x,y\)

\(\Rightarrow Min_{\left|2+y-5\right|}=0\Leftrightarrow y=3\) (2)

Từ (1), (2)

\(\Rightarrow MIN_A=3\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

2/ Để \(\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}\) lớn nhất

\(\Rightarrow2+\left|x+3\right|+\left|y+7\right|\) nhỏ nhất

Ta có: \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\forall x\\\left|y+7\right|\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}Min_{\left|x+3\right|}=0\Leftrightarrow x=-3\\Min_{\left|y+7\right|}=0\Leftrightarrow y=-7\end{matrix}\right.\)

\(\Rightarrow Min_{2+\left|x+3\right|+\left|y+7\right|}=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)

\(\Rightarrow MAX_{\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}}=\dfrac{10}{2}=5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
CT
Xem chi tiết
LA
Xem chi tiết
MT
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
MS
Xem chi tiết
VN
Xem chi tiết
NN
Xem chi tiết