Violympic toán 7

NV

1/ So sánh 910 và 89 + 79 + 69 +...+ 29 + 19

2/ Chứng minh ( 3639 - 910 ) chia hết cho 45

HQ
11 tháng 4 2017 lúc 10:45

Bài 1:

Ta có:

\(9^{10}\div9^9=9\)

\(\left(8^9+7^9+6^9+5^9+...+2^9+1^9\right)\div9^9\)

\(=\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+\left(\dfrac{6}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9\)

\(\left(\dfrac{8}{9}\right)^9< 1;\left(\dfrac{7}{9}\right)^9< 1;...;\left(\dfrac{1}{9}\right)^9< 1\)

\(\Rightarrow\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9< 1+1+...+1=9\)

Vậy \(9^{10}>8^9+7^9+6^9+...+2^9+1^9\)

Bài 2:

\(45=9.5\)

Ta có:

\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}36^{39}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Leftrightarrow\left(36^{39}-9^{10}\right)⋮9\)

Lại có:

\(36^{39}=\overline{...6}^{39}=\overline{...6}\Rightarrow36^{39}\) có chữ số tận cùng là \(6\)

Nên chia cho \(5\)\(1\)

\(9^{10}\) cũng có chữ số tận cùng là chữ số \(1\)

Nên chia cho \(5\) cũng dư \(1\)

\(\Rightarrow\left(36^{39}-9^{10}\right)⋮5\)

\(\left(5;9\right)=1\) Nên \(\left(36^{39}-9^{10}\right)⋮45\) (Đpcm)

Bình luận (0)
NC
11 tháng 4 2017 lúc 6:15

1/Tacó:
89^9​9​​ + 79^9​9​​ + 69^9​9​​ + 59^9​9​​ +......+ 29^9​9​​ + 19^9​9​​ < 89^9​9​​ . 8 = 810^{10}​10​​<910^{10}​10​​
=> 89^9​9​​ + 79^9​9​​ + 69^9​9​​ + 59^9​9​​ +.......+ 29^9​9​​ +19^9​9​​ < 910^{10}​10​​

mk chỉ lm đc bài 1 thôi b ạ b2 mk chịuhiha

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NP
Xem chi tiết
VT
Xem chi tiết
LG
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
MM
Xem chi tiết
LL
Xem chi tiết
BL
Xem chi tiết