Violympic toán 7

NA

1) \(\left(x-1\right)^2=25\)

2) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

3) \(\left(x+20\right)^{100}+|y+4|=0\)

NH
16 tháng 12 2018 lúc 18:52

1/ \(\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{25}\\x+1=-\sqrt{25}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

Vậy...

2/ \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Leftrightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^{x+4}-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^{x+4}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

3/ Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)

\(\left(x+20\right)^{100}+\left|y+4\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+20=0\\y+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)

Vậy..

Bình luận (0)
BB
16 tháng 12 2018 lúc 18:49

1) (x - 1)2 = 25
(x - 1)2 = 52
=> x - 1 = 5
x = 5 + 1
x = 6

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
NR
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
L7
Xem chi tiết
DX
Xem chi tiết