Đặt :
\(H=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-..........-\dfrac{1}{1024}\)
\(\Leftrightarrow H=-1-\left(\dfrac{1}{2}+\dfrac{1}{4}+...........+\dfrac{1}{1024}\right)\)
Đặt :
\(T=\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{1024}\)
\(\Leftrightarrow T=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\)
\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow T=1-\dfrac{1}{2^{10}}\)
\(\Leftrightarrow H=-1-\left(1-\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow H=-1-1+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow H=-2+\dfrac{1}{2^{10}}\)
Đặt \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{1024}\)
\(A=-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)
Đặt \(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(2B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)
\(2B-B=1-\dfrac{1}{1024}\)
\(\Rightarrow B=\dfrac{1023}{1024}\)
\(\Rightarrow A=-\dfrac{1023}{1024}\)
Đặt
\(W=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-....-\dfrac{1}{1024}\)
\(W=-1-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{1024}\right)\)
\(W=-1-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\right)\)
Đặt:
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
Thay \(A\) vào \(W\) ta có:
\(W=-1-1+\dfrac{1}{2^{10}}=-2+\dfrac{1}{2^{10}}\)