Bài 7: Đa thức một biến

NH

1. a) Cho đa thức \(h\left(x\right)=1+x+x^2+...+n^x.\) (n thuộc N*). Tính h(0), h(1), h(-1)

b) Cho đa thức \(p\left(x\right)=1-x+x^2-x^3+...+\left(-1\right)^nx^n.\) (n thuộc N*). Tính p(0), p(-1)

2. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:

a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)

b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)

LD
6 tháng 3 2019 lúc 13:01

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự

Bình luận (0)