\(a,x^2=64\\ \Rightarrow x^2=8^2\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
\(b,\left(x-2\right)^2=16\\ \Rightarrow\left(x-2\right)^2=4^2\\ \Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\\ c,\left(2x-3\right)^2=9\\ \Rightarrow\left(2x-3\right)^2=3^2\\ \Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
`g, 2x+5=3^4:3^2`
`=> 2x+5= 3^2`
`=>2x+5=9`
`=> 2x=9-5`
`=>2x=4`
`=>x=4:2`
`=>x=2`
`h, (3x-2^4) .7^3 =2.7^4`
`=> 3x-16 =2. 7^4 : 7^3`
`=> 3x-16 = 2. 7`
`=> 3x-16=14`
`=> 3x=14+16`
`=>3x=30`
`=>x=30:3`
`=>x=10`
\(a,x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
\(---\)
\(b,\left(x-2\right)^2=16\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
\(---\)
\(c,\left(2x-3\right)^2=9\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3+3\\2x=-3+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6:2=3\\x=0\end{matrix}\right.\)
\(---\)
\(g,2x+5=3^4:3^2\)
\(\Rightarrow2x+5=3^2\)
\(\Rightarrow2x+5=9\)
\(\Rightarrow2x=9-5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(---\)
\(h,\left(3x-2^4\right)\cdot7^3=2\cdot7^4\)
\(\Rightarrow3x-2^4=\dfrac{2\cdot7^4}{7^3}\)
\(\Rightarrow3x-16=2\cdot7\)
\(\Rightarrow3x-16=14\)
\(\Rightarrow3x=14+16\)
\(\Rightarrow3x=30\)
\(\Rightarrow x=30:3=10\)
#\(Toru\)