Luyện tập chung trang 73

H24
Hướng dẫn giải Thảo luận (1)

a) Tứ giác AMCP có hai đường chéo AC và MP cắt nhau tại trung điểm N của mỗi đường.

Do đó tứ giác AMCP là hình bình hành.

b) Xét ∆MAN và ∆PCN có:

AN = NC (vì N là trung điểm của AC)

\(\widehat {ANM} = \widehat {CNP}\) (hai góc đối đỉnh)

MN = NP (vì N là trung điểm MP)

Do đó ∆MAN = ∆PCN (c.g.c).

Suy ra \(\widehat {MAN} = \widehat {PCN}\) (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên suy ra AM // CP nên BM // CP.

Mặt khác, ∆MAN = ∆PCN suy ra AM = CP (hai cạnh tương ứng)

Mà AM = BM (vì M là trung điểm của AB) nên BM = CP.

Tứ giác BMPC có BM // CP và BM = CP nên tứ giác BMCP là hình bình hành.

• Để hình bình hành AMCP là hình chữ nhật thì AC = MP.

Mà BC = MP (vì tứ giác BMCP là hình bình hành).

Do đó AC = BC nên tam giác ABC là tam giác cân tại C.

Vây để hình bình hành AMCP là hình chữ nhật thì tam giác ABC là tam giác cân tại C.

• Để hình bình hành AMCP là hình thoi thì AM = CM hay \(AM = CM = BM = \frac{{AB}}{2}\)

Tam giác ABC có CM là đường trung tuyến ứng với cạnh AB của tam giác ABC.

Mà \(AM = CM = BM = \frac{{AB}}{2}\)

Khi đó tam giác ABC vuông tại C.

Vậy để hình bình hành AMCP là hình thoi thì tam giác ABC vuông tại C.

• Để hình bình hành AMCP là hình vuông thì hình bình hành AMCP là hình chữ nhật có AM = CM.

Do đó, tam giác ABC cân tại C có AM = CM.

Khi đó, tam giác ABC vuông cân tại C.

Vậy để hình bình hành AMCP là hình vuông thì tam giác ABC vuông cân tại C.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (2)
H24
Hướng dẫn giải Thảo luận (1)

Khi khung tre bị xô lệch, các góc không còn vuông nữa nhưng các cạnh đối vẫn song song với nhau.

Do đó, sau khi khung tre này bị xô lệch thì tứ giác tạo thành là hình bình hành.

Khi nẹp thêm một đường chéo vào khung thì hai đường chéo của hai đỉnh đối diện được giữ cố định nên các đỉnh trong hình trên không bị giữ xô lệch.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Vì Ou, Ov lần lượt là tia phân giác của \(\widehat {xOy};\widehat {x'Oy}\) nên \(\widehat {{O_1}} = \widehat {{O_2}};\widehat {{O_3}} = \widehat {{O_4}}\)

Mà \(\widehat {xOy} + \widehat {x'Oy} = {180^o}\) (vì \(\widehat {xOy};\widehat {x'Oy}\) là hai góc kề bù).

Hay \(\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} + \widehat {{O_4}} = {180^o}\)

Suy ra \(2\widehat {{O_2}} + 2\widehat {{O_3}} = {180^o}\)

Do đó \(\widehat {{O_2}} + \widehat {{O_3}} = {90^o}\) hay \(\widehat {uOv} = {90^o}\) suy ra \(\widehat {uOC} = {90^o}\) hay \(\widehat {BOC} = {90^o}\)

Vì B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov

Nên \(\widehat {ABO} = {90^o};\widehat {AC{\rm{O}}} = {90^o}\)

Tứ giác OBAC có \(\widehat {AC{\rm{O}}} + \widehat {BOC} + \widehat {ABO} + \widehat {BAC} = {360^o}\)

\({90^o} + {90^o} + {90^o} + \widehat {BAC} = {360^o}\)

270°+\(\widehat {BAC} = {360^o}\)

Suy ra \(\widehat {BAC}\)=360°−270°=90o

Xét tứ giác OBAC có \(\widehat {BOC} = {90^o};\widehat {ABO} = {90^o};\widehat {AC{\rm{O}}} = {90^o}\)

Vậy tứ giác OBAC là hình chữ nhật.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Vì ABCD là hình vuông nên \(\widehat D = {90^o}\)

Đường thẳng qua M vuông góc với AE cắt BC tại N nên \(\widehat {APM} = {90^o}\)

Do đó \(\widehat D = \widehat {APM} = {90^o}\)

Xét ∆ADM và ∆APM có:

\(\widehat D = \widehat {APM} = {90^o}\) (chứng minh trên)

Cạnh AM chung

\(\widehat {MA{\rm{D}}} = \widehat {MAP}\)(vì AM là tia phân giác của \(\widehat {DAP}\)).

Do đó ∆ADM = ∆APM (cạnh huyền – góc nhọn).

Suy ra MD = MP (hai cạnh tương ứng).

Chứng minh tương tự ta có BN = PN.

Ta có MP + PN = MN mà MD = MP; BN = PN (chứng minh trên)

Do đó DM + BN = MN.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

* Khẳng định A sai vì có xảy ra trường hợp tứ giác mà không có góc tù.

Chẳng hạn như hình chữ nhật có bốn góc vuông, tức là hình chữ nhật không có góc tù.

* Khẳng định B.

Tứ giác có ba góc nhọn thì tổng số đo của ba góc bé hơn: 90o . 3 = 270o.

Khi đó, góc còn lại sẽ lớn hơn: 360o – 270o = 90o.

Do đó, góc còn lại là góc tù nên khẳng định B đúng.

* Khẳng định C sai vì có thể xảy ra trường hợp tứ giác có hai góc tù, một góc vuông và một góc nhọn.

Ví dụ: Tứ giác ABCD có \(\widehat A = {100^o};\widehat B = {100^o};\widehat C = {90^o};\widehat D = {70^o}\)

* Khẳng định D sai vì có thể xảy ra trường hợp tứ giác có ba góc tù.

Ví dụ: Tứ giác MNPQ có \(\widehat M = {100^o};\widehat N = {110^o};\widehat P = {120^o};\widehat Q = {30^o}\).

Vậy khẳng định B là đúng.

Trả lời bởi Hà Quang Minh