Bài tập cuối chương 2

QL
Hướng dẫn giải Thảo luận (1)

Dựa vào tính chất của dãy số, ta chọn đáp án D

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).

Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).

Chọn đáp án D.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

A. Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{u_n^2}}{{{u_n}}} = {u_n}\) phụ thuộc vào n nên (\({u_n})\) thay đổi, do đó\(\left( {{u_n}} \right)\) không phải cấp số nhân.

B. Ta có: \(\frac{{{u_{n + 1}}}}{{{{u_n}}}}= 2\), do đó \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 2\).

C. Ta có: \({u_{n + 1}}- {u_n} = 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = 2\) .

D. Ta có: \({u_{n + 1}}- {u_n} =  - 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = -2\).

Vậy ta chọn đáp án B.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \({u_n} - {u_{n - 1}} = \left( {2n - 1} \right) - \left[ {2\left( {n - 1} \right) - 1} \right] = 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2 \times 1 - 1 = 1,\;\;\;d = 2\)

\({S_{100}} = \frac{{100}}{2}\left[ {2 \times 1 + \left( {100 - 1} \right).2} \right] = 10\;000\)

Chọn đáp án C.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \({u_1} = 1,\;\;{u_2} = 2, \ldots ,{u_{12}} = 12\).

\({u_2} - {u_1} = {u_3} - {u_2} =...={u_{12}} - {u_{11}} = 1\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 1,\;d = 1\).

Tổng số tiếng chuông trong khoảng từ 0 đến 12 giờ trưa là:

\({S_{12}} = \frac{{12 \times \left( {1 + 12} \right)}}{2} = 78\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Số tế bào phân chia sau mỗi 20 phút tạo thành cấp số nhân với \({u_1} = 2,\;q = 2\).

Sau 24 giờ, tức \(n = \frac{{24 \times 60}}{{20}} = 72\), tế bào ban dầu phân chia thành số tế bào là:

\({u_{72}} = 2 \times {2^{71}} = 2^{72}\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có \({u_{k - 1}} = {u_1} + \left( {k - 2} \right)d\)

\({u_k} = {u_1} + \left( {k - 1} \right)d\)

\({u_{k + 1}} = {u_1} + kd\)

Do đó:

\({u_{k - 1}} + {u_{k + 1}} = {u_1} + \left( {k - 2} \right)d + {u_1} + kd = 2{u_1} + \left( {2k - 2} \right)d\) \( = 2\left[ {{u_1} + \left( {k - 1} \right)d} \right] = 2{u_k}\)

Suy ra: \({u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}\) (đpcm).

b) Ta có: \({u_{k - 1}} = {u_1} \times {q^{k - 2}}\)

\({u_k} = {u_1} \times {q^{k - 1}}\)

\({u_{k + 1}} = {u_1} \times {q^k}\)

Do đó:

\({u_{k - 1}} \times {u_{k + 1}} = \left( {{u_1} \times {q^{k - 2}}} \right) \times \left( {{u_1} \times {q^k}} \right) = u_k^2.{q^{2k - 2}} = {\left( {{u_1}.{q^{k - 1}}} \right)^2} = u_k^2\) (đpcm).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Gọi 3 số cần tìm lần lượt là: \({u_{n - 1}},\;{u_n},\;{u_{n + 1}}\)

Theo tính chất của cấp số cộng ta có: \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\)

Mà đề bài: \({u_{n - 1}} + {u_n} + {u_{n + 1}} = 21\)  suy ra \(3{u_n} = 21\;\)

  \(\begin{array}{l} \Leftrightarrow {u_n} = 7\\ \Leftrightarrow \left\{ \begin{array}{l}{u_{n - 1}} = {u_n} - d = 7 - d\\{u_{n + 1}} = {u_n} + d = 7 + d\end{array} \right.\end{array}\)

Lần lượt cộng thêm các số 2, 3, 9 vào 3 số ta được: \({u_{n - 1}} + 2,\;{u_n} + 3,\;{u_{n + 1}} + 9\) hay \(9 - d,\;10,\;16 + d\)

Theo tính chất của cấp số nhân ta có:

\(\begin{array}{l}\left( {9 - d} \right)\left( {16 + d} \right) = {10^2}\\ \Leftrightarrow {d^2} + 7d - 44 = 0\\ \Leftrightarrow \left[ \begin{array}{l}d =  - 11\\d = 4\end{array} \right.\end{array}\)      

Vậy 3 số cần tìm là: 18; 7; -4 hoặc 3; 7; 11.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Mỗi bậc thang cao 16cm = 0,16m.

Do đó, n bậc thang cao 0,16n (m).

Vì mặt sàn cao hơn mặt sân 0,5m nên công thức tính độ cao của bậc n so với mặt sân là:

\({h_n} = \left( {0,5 + 0,16n} \right)\) (m)

b) Độ cao của sàn tầng hai so với mặt sân tương ứng với \(n = 25\) là:

\({h_{25}} = 0,5 + 0,16 \times 25 = 4,5\) (m)

Trả lời bởi Hà Quang Minh