Bài tập cuối chương 1

QL
Hướng dẫn giải Thảo luận (1)

a) Phát biểu “Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3” là một mệnh đề toán học (mệnh đề đúng).

b) Phát biểu “Nếu \(\widehat {AMB} = {90^o}\) thì M nằm trên đường tròn đường kính AB” là một mệnh đề toán học (mệnh đề đúng).

c) Phát biểu “Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam” không là một mệnh đề toán học (vì không liên quan đến sự kiện nào trong toán học).

d) Phát biểu “Mọi số nguyên tố đều là số lẻ" là một mệnh đề toán học (mệnh đề sai).

=> Chỉ có phát biểu c) không là một mệnh đề toán học.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

+) Mệnh đề phủ định của mệnh đề A là \(\overline A \): “Đồ thị hàm số y = x không là một đường thẳng”

Mệnh đề \(\overline A \) sai vì đồ thị hàm số y = x là một đường thẳng.

+) Mệnh đề phủ định của mệnh đề B là \(\overline B \): “Đồ thị hàm số \(y = {x^2}\) đi qua điểm A (3; 9)”

Mệnh đề \(\overline B \) đúng vì \(9 = {3^2}\) nên A (3;9) thuộc đồ thị hàm số \(y = {x^2}\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD là hình bình hành”

Đúng vì mỗi hình chữ nhật đều là hình bình hành.

b) Mệnh đề \(P \Rightarrow Q\) là: “Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD là hình vuông”

Sai vì hầu hết các hình thoi không là hình vuông

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”

Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”

Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”

Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Tham khảo: 

a) Tập hợp A là khoảng (-2;1) và được biểu diễn là:

b) Tập hợp B là đoạn [-3; 0] và được biểu diễn là:

c) Tập hợp B là nửa khoảng \(( - \infty ;1]\) và được biểu diễn là:

d) Tập hợp B là nửa khoảng \((-2; - \infty )\) và được biểu diễn là:

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: A là tập hợp 32 đội tham gia World Cup 2018.

B là tập hợp 16 đội sau vòng thi đấu bảng (chọn từ 32 đội của tập hợp A sau thi thi đấu theo bảng)

Rõ ràng mỗi phần tử (mỗi đội) của tập hợp B cũng là một phần tử (một đội) của tập hợp A.

Do đó: \(B \subset A\)

Tương tự: Từ 16 đội của B, sau khi đấu loại trực tiếp, còn lại 8 đội vào tứ kết kí hiệu là tập hợp C

Do đó: \(C \subset B\)

Vậy \(C \subset B \subset A\).

b) Tập hợp \(A \cap C\) gồm các đội bóng vừa thuộc 32 đội tham gia World Cup 2018, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.

Tập hợp \(B \cap C\) gồm các đội bóng vừa thuộc 16 đội sau vòng thi đấu bảng, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.

Vậy \(A \cap C = B \cap C = C\)

c) Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các đội thuộc 32 đội tham gia World Cup 2018 nhưng không thuộc 16 đội sau vòng thi đấu bảng.

Vậy đó là 16 đội không vượt qua vòng thi đấu bảng.

Nói cách khác: Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các đội bóng bị loại sau vòng đấu bảng.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (2)

Tham khảo:

+) \(A \cap B = [0;3] \cap (2; + \infty ) = (2;3]\)

+) \(A \cup B = [0;3] \cup (2; + \infty ) = [0; + \infty )\)

+) \(A\,{\rm{\backslash }}\,B = [0;3]\,{\rm{\backslash }}\,(2; + \infty ) = [0;2]\)

+) \(B\,{\rm{\backslash }}\,A = (2; + \infty )\,{\rm{\backslash }}\,[0;3] = (3; + \infty )\)

+) \(\mathbb{R}\,{\rm{\backslash }}\,B = \mathbb{R}\,{\rm{\backslash }}\,(2; + \infty ) = ( - \infty ;2]\)

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (2)

Ta có:

\({x^2} - 2x - 3 = 0 \Leftrightarrow (x + 1)(x - 3) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right. \Rightarrow E = \{  - 1;3\} \)

Lại có: \((x + 1)(2x - 3) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = \frac{3}{2}\end{array} \right.\)

\( \Rightarrow G = \left\{ { - 1;\frac{3}{2}} \right\}\)

\( \Rightarrow P = E \cap G = \left\{ { - 1} \right\}\).

Trả lời bởi Hà Quang Minh