Bài 5. Phương trình lượng giác cơ bản

H24
Hướng dẫn giải Thảo luận (1)

a) Điều kiện xác định là: \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Vì tan0 = 0 nên phương trình tanx = 0 có các nghiệm \(x = k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là: \(S = \{ k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{*{20}{l}}{b){\rm{ }}tan\left( {30^\circ -3x} \right) = tan75^\circ }\\{ \Leftrightarrow \;tan\left( {3x-30^\circ } \right) = tan\left( {-{\rm{ }}75^\circ } \right)}\\{ \Leftrightarrow \;3x-30^\circ  = -75^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = -\,45^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;x = -15^\circ  + k120^\circ ,k\; \in \;\mathbb{Z}.}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ -15^\circ  + k120^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{l}{\rm{c, cos}}\left( {x + \frac{\pi }{{12}}} \right) = {\rm{cos}}\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi \\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{6} + k2\pi ; - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}} \right\}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Trên đường tròn lượng giác hai điểm M và N biểu diễn các góc lượng giác có số đo góc x thỏa mãn \(cotx =  - 1\).

Điểm M biểu diễn các góc lượng giác có số đo góc \(\frac{{3\pi }}{4} + k2\pi ,k \in \mathbb{Z}\).

Điểm N biểu diễn các góc lượng giác có số đo góc \( - \frac{\pi }{4} + k2\pi ,k \in \mathbb{Z}\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)

Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).

\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)

Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Những điểm biểu diễn góc x trên đường tròn lượng giác có \(tanx = \sqrt 3 \) là M và N.

Điểm M là điểm biểu diễn các góc lượng giác có số đo \(\frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).

Điểm N là điểm biểu diễn các góc lượng giác có số đo \( - \frac{{2\pi }}{3} + k\pi ,k \in \mathbb{Z}\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Điểm biểu diễn góc lượng giác x có \(cosx = \frac{{ - 1}}{2}\) là M và N.

Số đo góc lượng giác có điểm biểu diễn M là: \(\frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\).

Số đo góc lượng giác có điểm biểu diễn N là: \(\frac{{4\pi }}{3} + k2\pi ,k \in \mathbb{Z}\).

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a, Với mọi \(x\in R\), ta có: \(-1\le sin\left(x\right)\le1\)

Do đó, không có giá trị nào của x để \(sin\left(x\right)=1,5\)

b, Những điểm biểu diễn góc lượng giác có \(sin\left(x\right)=0,5\) là M và N.

Điểm M biểu diễn cho các góc lượng giác có số đo là \(\dfrac{\pi}{6}+k2\pi,k\in Z\)

Điểm N biểu diễn cho các góc lượng giác có số đo là \(\dfrac{5\pi}{6}+k2\pi,k\in Z\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

\(a,x-1=0\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

\(b,x^2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1\right\}\)

c, ĐK: \(x\ge\dfrac{\sqrt{2}}{2}\)

\(\sqrt{2x^2-1}=x\Leftrightarrow2x^2-1=x^2\Leftrightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1\right\}\)

Từ đó, hai phương trình b và c có cùng tập nghiệm.

 

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Độ dài bóng OM bằng 10 cm khi s = 10 hoặc s = -10.

Khi s = 10. Ta có: \(17cos5\pi t = 10 \Leftrightarrow cos5\pi t = \frac{{10}}{{17}}\)

Khi s = 10. Ta có: \(17cos5\pi t =  - 10 \Leftrightarrow cos5\pi t = \frac{{ - 10}}{{17}}\)

Từ đó, ta có thể xác định được các thời điểm t bằng cách giải phương trình côsin.

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

\(x^2=2x\)

Với x chưa khác 0 thì không thể chia (vì không có số nào chia đc cho 0)

Trả lời bởi Shinichi Kudo
H24
Hướng dẫn giải Thảo luận (1)

a) Với mọi \(x \in \mathbb{R}\) ta có \( - 1 \le cosx \le 1\)

Vậy phương trình \(cosx =  - 3\;\) vô nghiệm.

\(\begin{array}{l}b)\,\;cosx = cos{15^o}\;\\ \Leftrightarrow \left[ \begin{array}{l}x = {15^o} + k{360^o},k \in \mathbb{Z}\\x =  - {15^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = {15^o} + k{360^o}\) hoặc \(x =  - {15^o} + k{360^o},k \in \mathbb{Z}\).

\(\begin{array}{l}c)\;\,cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\\x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,\) hoặc \(x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).

Trả lời bởi Quoc Tran Anh Le