Bài 2. Tứ giác nội tiếp

H24
Hướng dẫn giải Thảo luận (1)

Các tứ giác trong Hình 1 đều có các đỉnh nằm trên đường tròn.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Ta có thể vẽ tứ giác nội tiếp đường tròn và một tứ giác không nội tiếp đường tròn.

Chẳng hạn:

• Tứ giác ABCD nội tiếp đường tròn (O).

• Tứ giác A'B'C'D' không nội tiếp đường tròn (I).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Tứ giác trong hình hoa văn trang trí mặt lưng của chiếc ghế với đường tròn trong Hình 3 là tứ giác có các đỉnh đều nằm trên đường tròn.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD nhỏ.

Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD lớn.

b) - Góc \(\widehat {DAB}\) là góc nội tiếp chắn cung BD nhỏ.

Suy ra \(\widehat {DAB} = \frac{1}{2}\) số đo cung BD nhỏ.

- Góc \(\widehat {DCB}\) là góc nội tiếp chắn cung BD lớn.

Suy ra \(\widehat {DCB} = \frac{1}{2}\) số đo cung BD lớn.

Ta có \(\widehat {DAB} + \widehat {DCB} = \frac{1}{2}\) (số đo cung BD nhỏ + số đo cung BD lớn)

= \(\frac{1}{2}\).360o = 180o.

c) Tổng số đo của hai góc \(\widehat {DAB}\) và \(\widehat {DCB}\) bằng 180o.

d) Tổng số đo của hai góc đối diện còn lại của tứ giác ABCD là 180o 

(vì 360o – 180o = 180o).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Tứ giác ABCD là tứ giác nội tiếp.

Do đó \(\widehat A + \widehat C = {180^o}\) suy ra \(\widehat A = {180^o} - \widehat C = {180^o} - {93^o} = {87^o}\).

\(\widehat B + \widehat D = {180^o}\) suy ra \(\widehat D = {180^o} - \widehat B = {180^o} - {57^o} = {123^o}\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Tứ giác ABCD là tứ giác nội tiếp.

Do đó \(\widehat {ABC} + \widehat {ADC} = {180^o}\) suy ra \(\widehat {ADC} = {180^o} - \widehat {ABC} = {180^o} - {70^o} = {110^o}\).

Mà \(\widehat {ADO} + \widehat {OCD} = \widehat {ADC}\) suy ra \(\widehat {ADO} = {110^o} - {50^o} = {60^o}\).

Vì OA = OD = R nên tam giác OAD cân tại O

 Suy ra \(\widehat {OAD} = \widehat {ADO} = {60^o}\) (tính chất tam giác cân)

Vậy tam giác OAD đều suy ra \(\widehat {AOD} = {60^o}\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Độ dài các đoạn thẳng OA, OB, OC, OD là bằng nhau.

Nhận xét: 

+ Tâm của đường tròn ngoại tiếp hình chữ nhật ABCD là giao điểm của hai đường chéo.

+ Đường kính của đường tròn ngoại tiếp hình chữ nhật ABCD là đường chéo của hình chữ nhật.

b) Tâm của đường tròn ngoại tiếp hình vuông MNPQ  là I.

 Bán kính của đường tròn ngoại tiếp hình vuông MNPQ  là:

R = IM = IN = IP = IQ = \(\sqrt {\frac{{{a^2}}}{2}}  = \frac{{a\sqrt 2 }}{2}\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Hình vuông ABCD có M là giao điểm của hai đường chéo. Suy ra đường tròn ngoại tiếp hình vuông ABCD có tâm M và bán kính R = \(\frac{{a\sqrt 2 }}{2} = \frac{{5\sqrt 2 }}{2}\).

b) Hình chữ nhật STUV có O là giao điểm của hai đường chéo. Suy ra đường tròn ngoại tiếp hình chữ nhật STUV có tâm O và bán kính

R = \(\frac{{SU}}{2} = \frac{{\sqrt {S{T^2} + U{T^2}} }}{2} = \frac{{\sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {1^2}} }}{2} = \frac{{\sqrt 9 }}{2} = \frac{3}{2}\).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Ta thấy đường tròn ngoại tiếp hình vuông suy ra độ dài đường chéo hình vuông là đường kính của hình tròn.

Độ dài của đường chéo hình vuông là: d = 2.R = 2.3 = 6 cm.

Độ dài cạnh hình vuông là: a = \(\sqrt {\frac{{{d^2}}}{2}}  = \sqrt {\frac{{{6^2}}}{2}}  = 3\sqrt 2 \) cm.

Diện tích hình vuông là: \(3\sqrt 2 .3\sqrt 2 \) = 18 (cm2).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)