Bài 2: Tỉ số lượng giác của góc nhọn

SK
Hướng dẫn giải Thảo luận (1)

sin750 = cos150
cos530 = sỉn370
sin 47020' = cos 42040'
tan 620 = cot 280
cotg 82045' = tg 7015'

Trả lời bởi Lưu Hạ Vy
SK
Hướng dẫn giải Thảo luận (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

BC2=AB2+AC2=62+82=100BC2=AB2+AC2=62+82=100

Suy ra: BC = 10 (cm)

Ta có:

sinˆB=ACBC=810=0,8sin⁡B^=ACBC=810=0,8

cosˆB=ABBC=610=0,6cos⁡B^=ABBC=610=0,6

tgˆB=ACAB=86=43tgB^=ACAB=86=43

cotgˆC=tgˆB=43

Trả lời bởi ✿ Hương ➻❥
SK
Hướng dẫn giải Thảo luận (2)

Áp dụng định lý Py-ta-go ta có:

x2=202+212⇒x=29.

Trả lời bởi Nhật Linh
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (3)
SK
Hướng dẫn giải Thảo luận (1)

\(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}\)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (3)

Vẽ tam giác ABC vuông tại A, góc C = 34°

Theo định nghĩa ta có:

2016-11-05_162426

Trả lời bởi Nhật Linh
SK
Hướng dẫn giải Thảo luận (3)

Vận dụng định lý về tỉ số lượng giác của hai góc phụ nhau ta có:

sin60° = cos(90° – 60°) = cos30°

Tương tự:

cos75° = sin(90° – 75°) = sin 15°

sin52°30′ = cos(90° – 52°30′) = 38°30′

cotg82° = tg8°; tg80° = cotg10°

Trả lời bởi Nhật Linh
SK
Hướng dẫn giải Thảo luận (3)

(Xem hình bên)

sinB=ACBC⇒AC=BC⋅sinB=8⋅sin60∘=43.

Trả lời bởi Nhật Linh
SK
Hướng dẫn giải Thảo luận (1)

a) A B C H 13 5

xét tam giác ABH vuông tại H có:

\(AH^2=AB^2-BH^2\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=12\)

theo tỉ lệ thức trong tam giác vuông ABC có:

\(AH^2=BH.CH\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=\frac{144}{5}=28,8\)

xét tam giác vuông AHC có:

\(AC^2=AH^2+HC^2\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{12^2+28,8^2}=\frac{156}{5}=31,2\)

vậy : \(\sin B=\frac{AH}{AB}=\frac{12}{13}\)

\(\sin C=\frac{AH}{AC}=\frac{12}{31,2}=\frac{5}{13}\)

b) A B C H 3 4

theo tỉ số lượng giác trong tam giác ABC có:

\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3.4}=2\sqrt{3}\)

xét tam giác vuông ABH có:

\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{\left(2\sqrt{3}\right)^2+3^2}=\sqrt{21}\)

theo hệ thức lượng trong tam giác vuông ABC có:

\(AC^2=BC.HC\Rightarrow AC=\sqrt{BC.HC}=\sqrt{7.4}=2\sqrt{7}\)

Vậy : \(\sin B=\frac{AH}{AB}=\frac{2\sqrt{3}}{\sqrt{21}}=\frac{2\sqrt{7}}{7}\)

\(\sin C=\frac{AH}{AC}=\frac{2\sqrt{3}}{2\sqrt{7}}=\frac{\sqrt{21}}{7}\)

Trả lời bởi Hiệu diệu phương