Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

SK
Hướng dẫn giải Thảo luận (1)

Khoảng cách từ đảo đến chân đèn là:

\(38\cdot\cot30^0\simeq65,818\left(cm\right)\)

 

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

Xét ΔANB vuông tại N có 

\(AN=AB\cdot\sin B\)

nên \(AN\simeq6,772\left(cm\right)\)

XétΔACN vuông tại N có 

\(AC=\dfrac{AN}{\sin C}=13,544\left(cm\right)\)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chiều cao của vách đá là cạnh góc vuông đối diện với góc 25°

Khi đó chiều cao của vách đá là:

45.tg25 ≈ 20,984 (m)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Kẻ QS⊥PR

Ta có : \(\widehat{QTS}=180^0-\widehat{QTP}=180^0-150^0=30^0\)

Trong tam giác vuông QST, ta có:

\(QS=QT.sinQTS=8.sin30^0=4\left(cm\right)\)

\(TS=QT.cosQTS=8.cos30^0\sim6,928\left(cm\right)\)

Trong tam giác vuông QSP, ta có:

\(SP=QS.cotQPS=4.cot18^0=12,311\left(cm\right)\)

\(PT=SP-TS\sim12,311-6,928\sim5,383\left(cm\right)\)

b) Ta có:

\(S_{QPR}=\frac{1}{2}.QS.PR=\frac{1}{2}.QS.\left(PT+TR\right)\sim\frac{1}{2}.4.\left(5,383+5\right)\sim20,766\left(cm^2\right)\)

Trả lời bởi ₮ØⱤ₴₮
SK
Hướng dẫn giải Thảo luận (1)

 

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b: XétΔADE vuông tại E có \(AE=AD\cdot\cos A\)

nên AE=5,16(cm)

AB=AE-BE=2,66(cm)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)

nên \(\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (3)

bài trong sbt có giải á bạn

Trả lời bởi nguyễn thị mỹ lan
SK
Hướng dẫn giải Thảo luận (2)

giả sử góc a=135 độ , thì góc d=45 độ.kẻ đường cao ah khi đó góc dah=45 độ vậy tam giác adh cân và vuông.áp dụng pytago ah=6.căn bậc hai của 2.vậy diện tích hbh=15.6 căn bậc 2 của 2=90.căn bậc 2 của 2(cm^2)

Trả lời bởi nguyễn thị mỹ lan
SK
Hướng dẫn giải Thảo luận (1)

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm, D^=75∘

Kẻ AH⊥CD,BK⊥CD

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra:

DH=CD–HK2=18–122=3(cm)

Trong tam giác vuông ADH, ta có:

AH=DH.tgD=3.tg75∘≈11,196(cm)

Vậy:

SABCD=AB+CD2.AH≈12+182.11,196=167,94 (cm2).

Trả lời bởi Nguyễn Thị Mai Linh